Skip to main content
Leg
  1. Ctfs/
  2. Pwnable.Kr/

Leg

6 mins· ·
sigchill
Author
sigchill
Welcome to my study blog. Here I document my CTF writeups and security research.
Table of Contents

pwnable.kr - Leg
#

“Daddy told me I should study ARM architecture. But I know Intel architecture and it should be similar. Why bother to study ARM?”

from the hint we can assume that this challenge focus is ARM, we connect to the remote process and see it asks us for some password so i guess this is some password validation challenge lets dive into the source code.

source code analysis
#

disassembly
#

(gdb) disass main
Dump of assembler code for function main:
   0x00008d3c <+0>:	push	{r4, r11, lr}
   0x00008d40 <+4>:	add	r11, sp, #8
   0x00008d44 <+8>:	sub	sp, sp, #12
   0x00008d48 <+12>:	mov	r3, #0
   0x00008d4c <+16>:	str	r3, [r11, #-16]
   0x00008d50 <+20>:	ldr	r0, [pc, #104]	; 0x8dc0 <main+132>
   0x00008d54 <+24>:	bl	0xfb6c <printf>
   0x00008d58 <+28>:	sub	r3, r11, #16
   0x00008d5c <+32>:	ldr	r0, [pc, #96]	; 0x8dc4 <main+136>
   0x00008d60 <+36>:	mov	r1, r3
   0x00008d64 <+40>:	bl	0xfbd8 <__isoc99_scanf>
   0x00008d68 <+44>:	bl	0x8cd4 <key1>
   0x00008d6c <+48>:	mov	r4, r0
   0x00008d70 <+52>:	bl	0x8cf0 <key2>
   0x00008d74 <+56>:	mov	r3, r0
   0x00008d78 <+60>:	add	r4, r4, r3
   0x00008d7c <+64>:	bl	0x8d20 <key3>
   0x00008d80 <+68>:	mov	r3, r0
   0x00008d84 <+72>:	add	r2, r4, r3
   0x00008d88 <+76>:	ldr	r3, [r11, #-16]
   0x00008d8c <+80>:	cmp	r2, r3
   0x00008d90 <+84>:	bne	0x8da8 <main+108>
   0x00008d94 <+88>:	ldr	r0, [pc, #44]	; 0x8dc8 <main+140>
   0x00008d98 <+92>:	bl	0x1050c <puts>
   0x00008d9c <+96>:	ldr	r0, [pc, #40]	; 0x8dcc <main+144>
   0x00008da0 <+100>:	bl	0xf89c <system>
   0x00008da4 <+104>:	b	0x8db0 <main+116>
   0x00008da8 <+108>:	ldr	r0, [pc, #32]	; 0x8dd0 <main+148>
   0x00008dac <+112>:	bl	0x1050c <puts>
   0x00008db0 <+116>:	mov	r3, #0
   0x00008db4 <+120>:	mov	r0, r3
   0x00008db8 <+124>:	sub	sp, r11, #8
   0x00008dbc <+128>:	pop	{r4, r11, pc}
   0x00008dc0 <+132>:	andeq	r10, r6, r12, lsl #9
   0x00008dc4 <+136>:	andeq	r10, r6, r12, lsr #9
   0x00008dc8 <+140>:			; <UNDEFINED> instruction: 0x0006a4b0
   0x00008dcc <+144>:			; <UNDEFINED> instruction: 0x0006a4bc
   0x00008dd0 <+148>:	andeq	r10, r6, r4, asr #9
End of assembler dump.
(gdb) disass key1
Dump of assembler code for function key1:
   0x00008cd4 <+0>:	push	{r11}		; (str r11, [sp, #-4]!)
   0x00008cd8 <+4>:	add	r11, sp, #0
   0x00008cdc <+8>:	mov	r3, pc
   0x00008ce0 <+12>:	mov	r0, r3
   0x00008ce4 <+16>:	sub	sp, r11, #0
   0x00008ce8 <+20>:	pop	{r11}		; (ldr r11, [sp], #4)
   0x00008cec <+24>:	bx	lr
End of assembler dump.
(gdb) disass key2
Dump of assembler code for function key2:
   0x00008cf0 <+0>:	push	{r11}		; (str r11, [sp, #-4]!)
   0x00008cf4 <+4>:	add	r11, sp, #0
   0x00008cf8 <+8>:	push	{r6}		; (str r6, [sp, #-4]!)
   0x00008cfc <+12>:	add	r6, pc, #1
   0x00008d00 <+16>:	bx	r6
   0x00008d04 <+20>:	mov	r3, pc
   0x00008d06 <+22>:	adds	r3, #4
   0x00008d08 <+24>:	push	{r3}
   0x00008d0a <+26>:	pop	{pc}
   0x00008d0c <+28>:	pop	{r6}		; (ldr r6, [sp], #4)
   0x00008d10 <+32>:	mov	r0, r3
   0x00008d14 <+36>:	sub	sp, r11, #0
   0x00008d18 <+40>:	pop	{r11}		; (ldr r11, [sp], #4)
   0x00008d1c <+44>:	bx	lr
End of assembler dump.
(gdb) disass key3
Dump of assembler code for function key3:
   0x00008d20 <+0>:	push	{r11}		; (str r11, [sp, #-4]!)
   0x00008d24 <+4>:	add	r11, sp, #0
   0x00008d28 <+8>:	mov	r3, lr
   0x00008d2c <+12>:	mov	r0, r3
   0x00008d30 <+16>:	sub	sp, r11, #0
   0x00008d34 <+20>:	pop	{r11}		; (ldr r11, [sp], #4)
   0x00008d38 <+24>:	bx	lr
End of assembler dump.
(gdb) 

c code
#


#include <stdio.h>
#include <fcntl.h>
int key1(){
	asm("mov r3, pc\n");
}
int key2(){
	asm(
	"push	{r6}\n"
	"add	r6, pc, $1\n"
	"bx	r6\n"
	".code   16\n"
	"mov	r3, pc\n"
	"add	r3, $0x4\n"
	"push	{r3}\n"
	"pop	{pc}\n"
	".code	32\n"
	"pop	{r6}\n"
	);
}
int key3(){
	asm("mov r3, lr\n");
}
int main(){
	int key=0;
	printf("Daddy has very strong arm! : ");
	scanf("%d", &key);
	if( (key1()+key2()+key3()) == key ){
		printf("Congratz!\n");
		int fd = open("flag", O_RDONLY);
		char buf[100];
		int r = read(fd, buf, 100);
		write(0, buf, r);
	}
	else{
		printf("I have strong leg :P\n");
	}
	return 0;
}

Our goal is to get the flag so in order to pass the validation we need to give an input that will be equal to key1() + key2() + key3()

in order to get familiar a little with arm assembly i used this blog as a reference https://azeria-labs.com/writing-arm-assembly-part-1/

i studied parts 1-7 in order to have a basic grasp of ARM intuition i studied MIPS in uni which felt very similar which does make sense since they are both RISC architecture processors.

we can see that our instruction are in normal mode and not Thumb since the addrsses are increasing by 4 bytes,

lets analyze each key function

key1()
#


Dump of assembler code for function key1:
   0x00008cd4 <+0>:	push	{r11}		; (str r11, [sp, #-4]!)
   0x00008cd8 <+4>:	add	r11, sp, #0
   0x00008cdc <+8>:	mov	r3, pc
   0x00008ce0 <+12>:	mov	r0, r3
   0x00008ce4 <+16>:	sub	sp, r11, #0
   0x00008ce8 <+20>:	pop	{r11}		; (ldr r11, [sp], #4)
   0x00008cec <+24>:	bx	lr
End of assembler dump.
int key1(){
	asm("mov r3, pc\n");
}

pc in arm is always 2 instruction more so r3 will be worth 0x00008ce4

key2()
#

(gdb) disass key2
Dump of assembler code for function key2:
   0x00008cf0 <+0>:	push	{r11}		; (str r11, [sp, #-4]!)
   0x00008cf4 <+4>:	add	r11, sp, #0
   0x00008cf8 <+8>:	push	{r6}		; (str r6, [sp, #-4]!)
   0x00008cfc <+12>:	add	r6, pc, #1
   0x00008d00 <+16>:	bx	r6
   0x00008d04 <+20>:	mov	r3, pc
   0x00008d06 <+22>:	adds	r3, #4
   0x00008d08 <+24>:	push	{r3}
   0x00008d0a <+26>:	pop	{pc}
   0x00008d0c <+28>:	pop	{r6}		; (ldr r6, [sp], #4)
   0x00008d10 <+32>:	mov	r0, r3
   0x00008d14 <+36>:	sub	sp, r11, #0
   0x00008d18 <+40>:	pop	{r11}		; (ldr r11, [sp], #4)
   0x00008d1c <+44>:	bx	lr
End of assembler dump.
int key2(){
	asm(
	"push	{r6}\n"
	"add	r6, pc, $1\n"
	"bx	r6\n"
	".code   16\n"
	"mov	r3, pc\n"
	"add	r3, $0x4\n"
	"push	{r3}\n"
	"pop	{pc}\n"
	".code	32\n"
	"pop	{r6}\n"
	);
}

we see that it switches from thumb to standard arm mode because it forces the sp to be odd , if mov r3,pc is at address x then r3 becomes x+2+2 (2 instruction from current address) and then + 4 because of the addition , which is the adress of pop {r6} aka 0x00008d0c

key3()
#

(gdb) disass key3
Dump of assembler code for function key3:
   0x00008d20 <+0>:	push	{r11}		; (str r11, [sp, #-4]!)
   0x00008d24 <+4>:	add	r11, sp, #0
   0x00008d28 <+8>:	mov	r3, lr
   0x00008d2c <+12>:	mov	r0, r3
   0x00008d30 <+16>:	sub	sp, r11, #0
   0x00008d34 <+20>:	pop	{r11}		; (ldr r11, [sp], #4)
   0x00008d38 <+24>:	bx	lr
End of assembler dump.
int key3(){
	asm("mov r3, lr\n");
}

this is similar to key1() this time we move to r3 the lr which is the link register aka return register, we have to look in the dissassembly in main,

 0x00008d7c <+64>:	bl	0x8d20 <key3>
   0x00008d80 <+68>:	mov	r3, r0

as we know lr points to the address right after bl, so key3() returns 0x00008d80

to sum this challenge up we sum all the return values Total Sum: 0x1a770 (Decimal: 108400)

and we get the flag daddy_has_lot_of_ARM_****

this was quite a fun challenge as it forced me to learn something new!

Related